Detecting Non-linearity Using Squares of Time Series Data*
نویسندگان
چکیده
منابع مشابه
Detecting Huntington Patient Using Chaotic Features of Gait Time Series
Huntington's disease (HD) is a congenital, progressive, neurodegenerative disorder characterized by cognitive, motor, and psychological disorders. Clinical diagnosis of HD relies on the manifestation of movement abnormalities. In this study, we introduce a mathematical method for HD detection using step spacing. We used 16 walking signals as control and 20 walking signals as HD. We took a s...
متن کاملDetecting system state transitions in environmental time-series using non linear time series analysis
Environmental systems and time series emanating from such systems present a particular interest. System state transitions can occur in time and/or in space and the detection of such transitions can be particularly useful in the design related to such systems. Since the majority of physical systems present non linear behavior the use of appropriate tools is necessary. Recurrence Plots (RPs) and ...
متن کاملUsing Wavelets and Splines to Forecast Non-Stationary Time Series
This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...
متن کاملDetecting Time Correlations in Time-Series Data Streams
In this paper, a novel method for analyzing time-series data and extracting time-correlations among multiple time-series data streams is described. The time-correlations tell us the relationships and dependencies among time-series data streams. Reusable time-correlation rules can be fed into various analysis tools, such as forecasting or simulation tools, for further analysis. Statistical techn...
متن کاملA Bootstrap Test for Time Series Linearity
A bootstrap algorithm is proposed for testing Gaussianity and linearity in stationary time series, and consistency of the relevant bootstrap approximations is proven rigorously for the first time. Subba Rao and Gabr (1980) and Hinich (1982) have formulated some well-known nonparametric tests for Gaussianity and linearity based on the asymptotic distribution of the normalized bispectrum. The pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Mathematics & Statistics
سال: 2010
ISSN: 1994-5418
DOI: 10.3923/ajms.2010.296.302